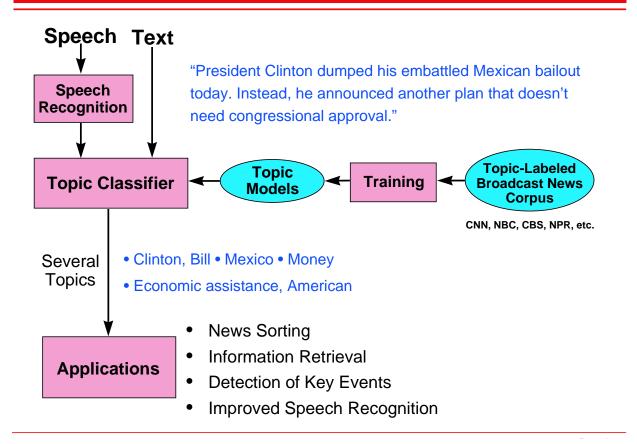


Topic Indexing of Broadcast News

Richard Schwartz BBN Systems and Technologies

28 March 1997

Topic Indexing

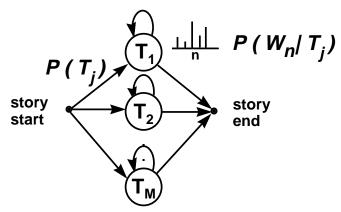


Primary Source Media Corpus

- Each news story is annotated with several detailed topics
 - from 1 to 13 topics
 - average 4.5 topics / story
- Example: story about Bill Clinton talking about loans to Mexico is labeled with
 - Bill Clinton
 - Mexico
 - money
 - American economic assistance
- The topic set is open
 - 5,000 topics in one year
 - 9,000 topics in four years

Traditional Generative Topic Model

- First, choose a topic, T_i
- For each important word:
 - choose the word according to P($W_n \mid T_i$)
 - unimportant words can be inserted randomly



- Model assumes there is only one true topic per story.
- All words in a story are assumed related to the topic.

Recognition Score for a Topic

Use Bayes' rule and assume words are independent

$$P(T_j | Words) = P(T_j) \frac{P(Words | T_j)}{P(Words)}$$
 Bayes' Rule

$$\approx \Pr(T_j) \prod_{t} \frac{P(W_t | T_j)}{P(W_t)}$$
 Independence

- Estimation noise (e.g., unobserved words for a topic) is a problem.
 - Solution 1: Discard "unimportant" words (e.g., words with low mutual information)
 - Solution 2: Smooth estimates with unconditioned model

$$Pr(W_t|T_i) = \alpha Pr(W_t|T_i) + (1-\alpha)Pr(W_t)$$

BBN

Problems with Traditional Model

- Model assumes there is only one true topic per story.
 - but typical stories have several topics

Story:

"President Clinton dumped his embattled Mexican bailout today. Instead, he announced another plan that doesn't need congressional approval."

Annotated Topics:

Clinton, Bill; Mexico; Money; Economic assistance, American

- This causes the distributions of words to overlap among topics
- Model assumes all important words are related to all topics.
 - But, for example, the word Clinton does not imply the topic Mexico in all stories.
 - Words from one topic are taken as negative evidence for another topic

Problems with Traditional Models (Cont.)

 Because distributions of words are estimated by simple counting, common words have higher probability than real keywords.

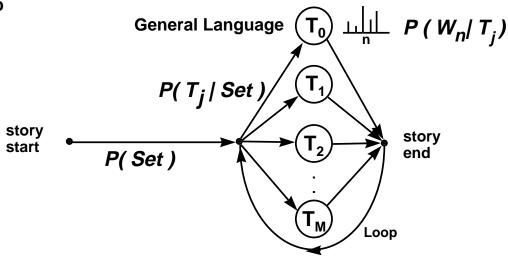
Rank Word		P(W T= "Clinton, Bill")
1	president	0.013
2	go	0.011
3	think	0.010
4	Clinton	0.009
5	say	0.008

New Model

- Assume each story has several topics.
- Some words (keywords) are related to each topic.
 - Different words may be related to different topics.
- All words are related to some topic
 - Most words are related to general language (T_0).

New Generative Model of Topic

- First, choose a Set of topics, T₀...T_M
- Normalize P (T_j | Set): $\sum_{i} P(T_j | Set) = 1$
- For each word:
 - Choose a topic according to P (T_i | Set)
 - Choose a word according to output distribution P ($W_n \mid T_i$)



Recognition Score for a Topic

$$P(Set | Words) = P(Set) \frac{P(Words | Set)}{P(Words)}$$
 Bayes' Rule

$$\frac{P(Words | Set)}{P(Words)} \approx \prod_{t} \frac{P(W_{t} | Set)}{p(W_{t})}$$
 Independence

$$P(W_t|Set) = \sum_j P(T_j|Set) p(W_t|T_j)$$

$$P(\text{Set} | \text{Words}) \approx P(\text{Set}) \prod_{t} \frac{\sum_{j} P(T_{j} | \text{Set}) P(W_{t} | T_{j})}{P(W_{t})}$$

Model for P(Set)

- Model set probability to avoid inconsistent topics
 - Likely topic pairs, e.g.,
 - Clinton with Election Politics
 - Clinton with NAFTA
 - Unlikely topic pairs, e.g.,
 - Election Politics with NAFTA
- Approximate joint P (T₁...T_M) as the product of all pairs normalized by the number of pairs to avoid bias

$$P(T_{1}...T_{M}) \approx \frac{\prod_{i=1}^{M-1} \prod_{j=i+1}^{M} P(T_{i}, T_{j})}{\binom{M}{2}}$$

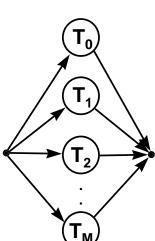
Estimation

 The count for a word is distributed among the labeled topics for a story in proportion to the posterior probability for each topic.

$$C(W_t|T_k) = \frac{P(T_k|Set)P(W_t|T_k)}{\sum_{j}P(T_j|Set)P(W_t|T_j)}$$

$$P(T_k | T_k \in Set) = \frac{\sum_{i} C(W_i | T_k)}{\text{# words in stories with } T_k}$$

$$P(W_i | T_k) = \frac{C(W_i | T_k)}{\sum_{i} C(W_i | T_k)}$$



Search Algorithm (check it outXXX)

- Considering all possible topic sets is impractical.
- First, we consider each topic independently.
- Then, we score subsets of the most likely few topics.

Problem: When scoring one topic, words in the story from other topics will be very unlikely.

Solution: Only use positive information

$$\frac{P(W_t|T_j)}{P(W_t)} \approx f\left[\frac{P(W_t|T_j)}{P(W_t)}\right]$$

$$f[x] = \left\{ \begin{array}{ll} \theta, & x < \theta \\ x, & x \ge \theta \end{array} \right\}$$

BBN

Topic Probabilities with New Method

- Given that a topic is in the set of topics for a story, we estimate the expected percentage of words that are related to that topic.
- Most topics are related to only 1-8% of the words
- 93.5% of the words are General English words

Торіс	P (T Set)
General English	0.935
Music, Black	0.085
Politics and government Clinton, Bill Politics and government	0.020

Word Probabilities with New Method

- Observation probability of the relevant words is raised
- Probability of irrelevant words is greatly reduced

T = "Clinton, Bill"

Old Method

Rank Word		P(W T)
1	president	0.013
2	go	0.011
3	think	0.010
4	Clinton	0.009
5	say	0.008

New Method

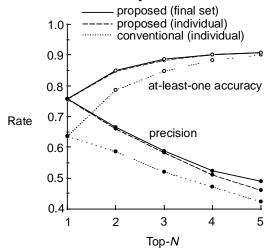
Rank	Word	P(W T)
1	president	0.104
2	Clinton	0.096
3	house	0.036
4	white	0.034
	-	-
36 44	go think	0.003 0.003

Results

- Trained on 1 year of stories from July '95 to Jun '96 (42,502 stories)
- Tested on 989 stories from July '96
- Allowed 4,627 topics that occur at least twice
- OOT (out-of-topic) rate was 2.45%
- Results:
 - 75.8% of the first choice topics are among the annotated labels
 - 63.6% for the traditional method
- On cursory examination of errors, often the recognized topic was correct and the annotator failed to include it.

Recall / Precision Tradeoff

- Recall: Fraction of annotated topics that are among the first N topics found
- Precision: Fraction of first N topics found that are among the annotated topics



- Recall and precision are always better for the new method.
- The co-occurence model of topics increases precision.

Summary

- Developed a new method of topic classification
- The model is more realistic
 - stories have several topics
 - only a few of the words are related to those topics
- The method is capable of topic classification among thousands of topics